## Fifth Semester B.E. Degree Examination, July/August 2021 Automata Theory and Computability

Time: 3 hrs.
Max. Marks: 80

## Note: Answer any FIVE full questions.

a. Design a DFSM to accept $L=\left\{w \in\{0,1\}^{*}\right.$ : w contains even 0 's and even 1 's $\}$. Show that the string 101011 is accepted.
(05 Marks)
b. Construct equivalent DFSM for the given NDFSM in Fig.Q.1(b).
(05 Marks)

Fig.Q.1(b)

c. Obtain the minimal (minimized) DFSM for the given existing DFSM in Fig.Q.1(c).
(06 Marks)

Fig.Q.1(c)


2 a. Construct DFSM to accept $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \mathrm{w}\right.$ does not contain substring aab $\}$. ( $\mathbf{0 5}$ Marks)
b. Obtain the minimal DFSM from the existing DFSM in Fig.Q.2(b).
(08 Marks)

Fig.Q.2(b)

c. Let $\mathrm{L}_{1}=\{$ peach, apple, cherry $\}$ and $\mathrm{L}_{2}=\left\{\right.$ pie, cobbler, $\in$ ). List all the elements of $\mathrm{L}_{1} \mathrm{~L}_{2}$ in lexicographic order.
(03 Marks)
3 a. Define Regular Expression (RE) and write $R E$ for $L=\left\{\mathrm{w} \in\{0,1\}^{*}\right.$ : W contains odd number of 0's $\}$.
(04 Marks)
b. Build a FSM for the RE $(a \cup b)^{*} \cdot a b b$.
(03 Marks)
c. Build a RE for the given FSM in Fig.Q.3(c).

Fig.Q.3(c)

d. Show that regular languages are closed under intersection.

4 a. State and prove pumping theorem for regular languages.
(06 Marks)
b. Construct regular grammar $G$ for $L=\left\{w \in\{a, b\}^{*}\right.$ : w ends with the pattern aaaa $\}$. Also generate FSM M that accepts L(G).
c. Show that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular.

5 a. Define Context Free Grammar (CFG). Design CFG for $L=\left\{w \in\{a, b\}^{*}: \#_{a}(w)=\#_{b}(w)\right\}$
(04 Marks)
b. Is the balanced parenthesis grammar (BAL) $\mathrm{S} \rightarrow \mathrm{SS}|(\mathrm{S})| \in$ is ambiguous. If so, obtain unambiguous grammar.
(07 Marks)
c. Design a PDA for $L=\left\{\mathrm{wCw}^{\mathrm{R}}: \mathrm{w} \in\{0,1\}^{*}\right\}$.
(05 Marks)
6 a. Convert the grammar to Chomsky Normal Form (CNF).
$\mathrm{S} \rightarrow \mathrm{aACa}$
$\mathrm{A} \rightarrow \mathrm{Ba}$
$B \rightarrow C \mid c$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \in$
(06 Marks)
b. Design PDA for $L=\left\{w^{R}: w \in\{a, b\}^{*}\right\}$.
(05 Marks)
c. Obtain LMD, RMD and parse tree for the string "+ * - xyxy" using the rules:

$$
\mathrm{E} \rightarrow+\mathrm{EE}|* \mathrm{EE}|-\mathrm{EE}|\mathrm{x}| \mathrm{y}
$$

(05 Marks)

7 a. Show that $L=\left\{0^{n} 1^{n} 2^{n}: n \geq 0\right\}$ is not context free.
(05 Marks)
b. Design a Turing machine to accept $L=\left\{0^{n} 1^{n}: n \geq 1\right\}$ show moves for string 0011. (07 Marks)
c. Prove that context free languages are closed under union.

8 a. State and prove pumping theorem for context free language.
(05 Marks)
b. Design a Turing machine which can multiple two positive integers ( $\mathrm{m}, \mathrm{n}$ ). (07 Marks)
c. Define deterministic context free language and show that deterministic CFL are not closed under intersection.
(04 Marks)
9 a. Define Post Correspondence Problem (PCP). Does the PCP with two lists.
$X=\left\{b, b a b^{3}, b a\right)$ and
$Y=\left(b^{3}, b a, a\right)$ have a solution.
(06 Marks)
b. If $L$ is recursive language over $\sum$, show that $\overline{\mathrm{L}}$ is also recursive.
(06 Marks)
c. Let $\mathrm{f}(\mathrm{n})=4 \mathrm{n}^{3}+5 \mathrm{n}^{2}+7 \mathrm{n}+3$ prove that $\mathrm{f}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{3}\right)$.

10 a. Prove that the Turing machine M that halts on input w is undecidable.
(05 Marks)
b. Explain the model of Linear Bounded Automata (LBA), with a neat diagram.
c. Write short notes on:
i) Quantum computers
ii) Church Turing thesis.
(06 Marks)

